Problem 1

$$
\text { Let } x \text { and } y \text { be positive real numbers. If } x \neq y \text {, then } x+y>\frac{4 x y}{x+y} \text {. }
$$

Proof We will assume that x and y are positive real numbers. We will proceed with a proof by contraposition. Therefore we will also assume that $x+y \leq \frac{4 x y}{x+y}$ and will show that $x=y$.

Because both x and y are positive numbers, their sum will also be a positive number. Therefore we can safely multiply both sides of our inequality by $x+y$ to obtain

$$
\begin{aligned}
x+y & \leq \frac{4 x y}{x+y} \\
(x+y)(x+y) & \leq \frac{4 x y}{x+y}(x+y) \\
(x+y)(x+y) & \leq 4 x y
\end{aligned}
$$

Next we can expand the right side of our equation to get

$$
x^{2}+2 x y+y^{2} \leq 4 x y .
$$

Now we can gather all of our terms on the right side by subtracting $4 x y$ from both sides

$$
\begin{aligned}
x^{2}+2 x y+y^{2}-4 x y & \leq 4 x y-4 x y \\
x^{2}-2 x y+y^{2} & \leq 0
\end{aligned}
$$

which leaves us with 0 on the left side. Note that we can factor the right side to get

$$
(x-y)^{2} \leq 0
$$

We can solve for $x+y$ by taking the square root of both sides. Because squaring a quantity can turn negative values into positive ones, we must be careful with our inequality. Thus we are left with the following equations

$$
x-y \leq 0 \text { and } x-y \geq 0 .
$$

To find the relationship between x and y we can add y to both sides of the equations to get

$$
\begin{array}{rll}
x-y+y \leq 0+y & \text { and } & x-y+y \geq 0+y \\
x \leq y & \text { and } & x \geq y .
\end{array}
$$

The only way for $x \leq y$ and $x \geq y$ to be true is for $x=y$, as desired.
Thus we have proven that for all real numbers x and y, when $x+y \leq \frac{4 x y}{x+y}$, then $x=y$; or equivalently when $x \neq y$, then $x+y>\frac{4 x y}{x+y}$.

Figure 1: $\triangle A B C$ is a right, isosceles triangle

Problem 2

For all right triangles with a hypotenuse of length $a \mathrm{~cm}$ and legs of length $b \mathrm{~cm}$ and c cm , the triangle is isosceles if and only if its area is $\frac{1}{4} a^{2} \mathrm{~cm}^{2}$.

Proof. We will assume $\triangle A B C$ is a right triangle with a hypotenuse of length $a \mathrm{~cm}$ and legs of length $b \mathrm{~cm}$ and $c \mathrm{~cm}$. We will show that $\triangle A B C$ is isosceles if and only if its area is $\frac{1}{4} a^{2} \mathrm{~cm}^{2}$. To do this we will show two things. First, if $\triangle A B C$ is isosceles, then its area is $\frac{1}{4} a^{2} \mathrm{~cm}^{2}$. Secondly, if $\triangle A B C$ has an area of $\frac{1}{4} a^{2} \mathrm{~cm}^{2}$, then $\triangle A B C$ is isosceles.

We will start with proving that if $\triangle A B C$ is isosceles, then its area is $\frac{1}{4} a^{2} \mathrm{~cm}^{2}$. To do this we will additionally assume that $\triangle A B C$ is isosceles and will show its area to be $\frac{1}{4} a^{2} \mathrm{~cm}^{2}$. We can see a general picture of what $\triangle A B C$ might look like in Figure 1.

Note that because $\triangle A B C$ is a right triangle, can can flip it onto itself to make a rectangle. (See the dashed lines in Figure 1.) The area of this quadrilateral can be found by multiplying b by c. The area of $\triangle A B C$ would be have of that, or simply $\frac{1}{2} b c$.

The definition of isosceles tells us that the legs of our triangle will both have the same length, therefore $b=c$. We can use this fact to make a substitution in our area formula to obtain

$$
\text { area of } \begin{aligned}
\triangle A B C & =\frac{1}{2} b c \\
& =\frac{1}{2} b(b) \\
& =\frac{1}{2} b^{2} .
\end{aligned}
$$

Because $\triangle A B C$ is a right triangle, we can use the Pythagorean theorem which states $a^{2}=b^{2}+c^{2}$. Again, we know that $b=c$ so we can make another substitution to get

$$
\begin{aligned}
a^{2} & =b^{2}+c^{2} \\
a^{2} & =b^{2}+b^{2} \\
a^{2} & =2 b^{2} .
\end{aligned}
$$

Figure 2: $\triangle A B C$ is a right triangle

Then we can divide by 2 to solve for b^{2} which yields

$$
\frac{1}{2} a^{2}=b^{2}
$$

We can plug this value of b^{2} into our area formula to get

$$
\text { area of } \begin{aligned}
\triangle A B C & =\frac{1}{2} b^{2} \\
& =\frac{1}{2}\left(\frac{1}{2} a^{2}\right) \\
& =\frac{1}{4} a^{2}
\end{aligned}
$$

as desired.
Finally, we must show that if $\triangle A B C$ has an area of $\frac{1}{4} a^{2} \mathrm{~cm}^{2}$, then $\triangle A B C$ is isosceles. Like before, we can rotate the triangle onto itself to make a rectangle (see Figure 2). The area of the rectangle would be half of this rectangle, thus the area of $\triangle A B C$ is also $\frac{1}{2} b c$. Now we know that

$$
\frac{1}{4} a^{2}=\frac{1}{2} b c
$$

We are still dealing with a right triangle, so by the Pythagorean Theorem we know that $a^{2}=b^{2}+c^{2}$. Let's substitute this value for a^{2} into our area equation to obtain

$$
\begin{aligned}
\frac{1}{4} a^{2} & =\frac{1}{2} b c \\
\frac{1}{4}\left(b^{2}+c^{2}\right) & =\frac{1}{2} b c .
\end{aligned}
$$

We can simplify this equation by multiplying both sides by 4 and then grouping all terms on the same side to get

$$
\begin{aligned}
4 \cdot \frac{1}{4}\left(b^{2}+c^{2}\right) & =4 \cdot \frac{1}{2} b c \\
b^{2}+c^{2} & =2 b c \\
b^{2}+c^{2}-2 b c & =2 b c-2 b c \\
b^{2}-2 b c+c^{2} & =0
\end{aligned}
$$

Note that we can now factor the left side to obtain

$$
(b-c)^{2}=0
$$

To solve for $b-c$ we will take the square root of both side which gives us

$$
\begin{aligned}
\sqrt{(b-c)^{2}} & =\sqrt{0} \\
b-c & =0
\end{aligned}
$$

or equivalently,

$$
b=c
$$

If b and c are equal to each other, that means the legs of our triangle have the same length. Thus, by the definition of isosceles, $\triangle A B C$ is isosceles, as desired.

We have show that, for a right triangle $\triangle A B C$, both, if $\triangle A B C$ is isosceles then its area is $\frac{1}{4} a^{2}$ cm^{2}; as well as, if the area of $\triangle A B C$ is $\frac{1}{4} a^{2} \mathrm{~cm}^{2}$, then $\triangle A B C$ is isosceles. Thereby we have proven that a right triangle $\triangle A B C$, with a hypotenuse of length $a \mathrm{~cm}$ and legs of length $b \mathrm{~cm}$ and $c \mathrm{~cm}$, is isosceles if and only if its area is $\frac{1}{4} a^{2}$ square centimeters.

Problem 3

If m is an odd integer, then the equation $x^{2}+x-m=0$ has no integer solution for x.

Proof. We will prove this statement with an indirect proof by contraposition. Therefore we will assume that $x^{2}+x-m=0$ has an integer solution for x and will show that m is an even integer.

Assuming that $x^{2}+x-m=0$ has an integer solution for x means that

$$
x^{2}+x-m=0
$$

for some integer x. Let's manipulate our equation by adding m to both sides and doing a bit of factoring to get

$$
\begin{array}{r}
x^{2}+x-m=0 \\
x^{2}+x=m \\
x(x+1)=m .
\end{array}
$$

Now we have two cases to consider. Because $x \in \mathbb{Z}, x$ is either even or odd.
Case 1: First let's consider where x is even. Since 1 is odd, $x+1$ would be odd as proven by Theorem 2 which states that the sum of an even and odd integer is an odd integer. In this case, the product of $x(x+1)$ would be even because, as Theorem 4 states, the product of an even and odd integer is even. Thus m is even as desired.

Case 2: Next we must consider where x is odd. Since 1 is odd, $x+1$ would be even as proven by Theorem 3 which states that the sum of any two odd integers is even. In this case again, the product of $x(x+1)$ would be even because, as Theorem 4 states, the product of an even and odd integer is even. Thus m is even as desired.

In both cases we have shown that m is even. Therefore we have proven that if $x^{2}+x-m=0$ has an integer solution for x, then m is an even integer; or equivalently, if m is an odd integer, then $x^{2}+x-m=0$ has no integer solution for x.

Problem 4

For all natural numbers $n, 5^{n}-4 n \equiv 1(\bmod 16)$.

Proof. We will assume that n is a natural number. We will proceed with a proof by mathematical induction. We will define our predicate as

$$
P(n): 5^{n}-4 n \equiv 1 \quad(\bmod 16) .
$$

We will show $P(1)$ is true and that if $P(k)$ is true, then $P(k+1)$ is true for all natural numbers k.
First let's start by showing $P(1)$ is true. To do this, we must show that $5^{1}-4(1) \equiv 1(\bmod 16)$. Let's start by evaluating the left side of that equation:

$$
\begin{aligned}
5^{1}-4(1) & =5-4 \\
& =1
\end{aligned}
$$

We already have 1 in the right side. We know that congruence modulo 16 is an equivalence relationship and thus it is reflexive; therefore $1 \equiv 1(\bmod 16)$ is true. Consequently, $P(1)$ is true, as desired.

Next we must show that if $P(k)$ is true, then $P(k+1)$ is also true. Therefore we will assume that $P(k)$ is true and will show that $P(k+1)$ is true for any arbitrary $k \in \mathbb{N}$. We start by choosing a $k \in \mathbb{N}$. To show that $P(k+1)$ is true, we will show that $5^{k+1}-4(k+1) \equiv 1(\bmod 16)$. We can write $P(k)$ as

$$
5^{k}-4 k \equiv 1 \quad(\bmod 16)
$$

By the definition of congruence modulo 16, this means that

$$
16 \mid 5^{k}-4 k-1
$$

The definition of divides allows us to rewrite this statement as

$$
16 m=5^{n}-4 n-1
$$

for some integer m. Let's start working toward $P(k+1)$ by multiplying both sides by 5 . When we do this we get

$$
\begin{aligned}
5 \cdot 16 m & =5\left(5^{k}-4 k-1\right) \\
80 m & =5 \cdot 5^{k}-5 \cdot 4 k-5 \cdot 1 \\
80 m & =5^{k+1}-20 k-5 .
\end{aligned}
$$

Now let's manipulate the right side a bit to obtain

$$
80 m=5^{k+1}-4 k-4-1-16 k
$$

Further manipulation gives us

$$
\begin{aligned}
80 m & =5^{k+1}-4(k+1)-1-16 k \\
80 m+16 k & =5^{k+1}-4(k+1)-1 \\
16(5 m+k) & =5^{k+1}-4(k+1)-1 .
\end{aligned}
$$

Note that m is an integer, so $5 m$ is an integer as well because 5 is an integer and the integers are closed under multiplication. We also know that k is an integer, and, because the integers are closed under addition, $5 m+k$ is an integer. The definition of divides allows us to rewrite the following statement as

$$
16 \mid 5^{k+1}-4(k+1)-1
$$

which, by the definition of congruence modulo 16 , also means

$$
5^{k+1}-4(k+1) \equiv 1 \quad(\bmod 16)
$$

This means that $P(k+1)$ is true, as desired.
Thus, by the First Principle of Mathematical Induction, we have proven that $5^{n}-4 n \equiv 1(\bmod 16)$ for all natural numbers n.

Problem 5

For all nonempty sets A, B, and C from some universal set $U,(A \times B) \cup(C \times B)=$ $(A \cup C) \times B$.

Proof. We will assume that $A, B, C \subseteq U$. We will show that $(A \times B) \cup(C \times B)=(A \cup C) \times B$ for all nonempty sets A, B, C. To do this we will show that $(A \times B) \cup(C \times B) \subseteq(A \cup C) \times B$ and $(A \cup C) \times B \subseteq(A \times B) \cup(C \times B)$.

We will start by showing $(A \times B) \cup(C \times B) \subseteq(A \cup C) \times B$. Let's let choose an arbitrary $\left(x_{1}, y_{1}\right) \in(A \times B) \cup(C \times B)$. This means that $\left(x_{1}, y_{1}\right) \in(A \times B)$ or $\left(x_{1}, y_{1}\right) \in(C \times B)$.

Case 1: First let's consider $\left(x_{1}, y_{1}\right) \in(A \times B)$. This means that $x_{1} \in A$ and $y_{1} \in B$. Since $x_{1} \in A$, then $x_{1} \in A \cup C$. Now that we know $x_{1} \in A \cup C$ and $y_{1} \in B$, we can say $\left(x_{1}, y_{1}\right) \in(A \cup C) \times B$.

Case 2: In the other case, we must consider where $\left(x_{1}, y_{1}\right) \in(C \times B)$. This means that $x_{1} \in C$ and $y_{1} \in B$. Since $x_{1} \in C$, then $x_{1} \in A \cup C$. Thus we can say $\left(x_{1}, y_{2}\right) \in(A \cup C) \times B$ because $x_{1} \in A \cup C$ and $y_{1} \in B$.

In both cases we have shown that any element in $(A \times B) \cup(C \times B)$ is also in $(A \cup C) \times B$, therefore $(A \times B) \cup(C \times B) \subseteq(A \cup C) \times B$ as desired.

Now for the second part. We must show $(A \cup C) \times B \subseteq(A \times B) \cup(C \times B)$. Let's choose an arbitrary element $\left(x_{2}, y_{2}\right) \in(A \cup C) \times B$. This means there exists some $x_{2} \in A \cup C$ and some $y_{2} \in C$. Since $x_{2} \in A \cup C$, this means that $x_{2} \in A$ or $x_{2} \in C$.

Case 1: In the case where $x_{2} \in A$, we can say that $\left(x_{2}, y_{2}\right) \in A \times B$ because we already know $y_{2} \in B$. Since $\left(x_{2}, y_{2}\right) \in A \times B$, we know that $\left(x_{2}, u_{2}\right) \in(A \times B) \cup(C \times B)$.

Case 2: Similarly, in the case where $x_{2} \in C$, we can say that $\left(x_{2}, y_{2}\right) \in C \times B$ because $y_{2} \in B$. Since $\left(x_{2}, y_{2}\right) \in C \times B$, we can be sure $\left(x_{2}, y_{2}\right) \in(A \times B) \cup(C \times B)$.

In both cases we have shown that $(A \cup C) \times B \subseteq(A \times B) \cup(C \times B)$ by showing that any arbitrary element in $(A \cup C) \times B$ is also in $(A \times B) \cup(C \times B)$ as desired.

Since we have shown that both $(A \times B) \cup(C \times B) \subseteq(A \cup C) \times B$ and $(A \cup C) \times B \subseteq(A \times B) \cup(C \times B)$, we can conclude that $(A \times B) \cup(C \times B)=(A \cup C) \times B$ for all nonempty sets A, B, and C from some universal set U.

Problem 6

Let A, B, and C be nonempty sets and let $f: A \rightarrow B$ and $g: B \rightarrow C$ be functions. If $g \circ f$ is a surjection, then g is a surjection.

Proof. Let's assume A, B, and C are nonempty sets. We will also assume that $g \circ f$ is a surjection and will show that g is a surjection.

To prove that g is a surjection, we must show every element in its codomain has a corresponding pre-image in the domain. We will begin by choosing an arbitrary $y \in C$ (the codomain of g).

Now that we know there exists some element $y \in C$ and we assumed that $g \circ f$ is a surjection, this means that there exists an element $x \in A$ such that $g \circ f(x)=y$.

We will now construct a $b \in B$ (the domain of g) such that $g(b)=y$. Consider $b=f(x)$. Note that the function f maps elements from A to B. We know that $x \in A$, therefore the result of $f(x)$ will be an element in B. This $b \in B$. Now let's plug this value into the function g to get

$$
\begin{aligned}
g(b) & =g(f(x)) \\
& =g \circ f(x) .
\end{aligned}
$$

Recall that $g \circ f(x)=y$. We can now substitute this into our equation to get

$$
g(b)=y .
$$

This means that any arbitrary element in the codomain of g has a pre-image in the domain, therefore g is a surjection, as desired.

Thus we have shown that for nonempty sets A, B, and C and functions $f: A \rightarrow B$ and $g: B \rightarrow C$; if $g \circ f$ is a surjection, then g is a surjection.

Let A, B, and C be nonempty sets and let $f: A \rightarrow B$ and $g: B \rightarrow C$ be functions. If g is a surjection, then $g \circ f$ is a surjection.

Statement. We can provide a counter example to verify this statement is false. This means that we can provide a specific example where g is a surjection but $g \circ f$ is not a surjection. Consider the piecewise functions represented in Figure 3. That is, let $A=\{a\}, B=\{1,2\}$ and $C=\{X, Y\}$. Functions f and g are defined such that $f(a)=1, g(1)=X$, and $g(2)=Y$.

Note that g is a surjection because every element in it's codomain, C, has a corresponding element in the domain, B. Specifically, we can say $g(1)=X$ and $g(2)=Y$; thus our hypothesis is true.

However, note that $g \circ f$ is not a surjection. We say this because there is an element in the codomain of $g \circ f, C$, that has no corresponding pre-image in the domain, A. As you can tell from Figure 3, $Y \in C$ but no element from A will yield Y as an output.

Figure 3: $f: A \rightarrow B$ and $g: B \rightarrow C$ where g is surjective

Since we have shown a specific case where the hypothesis is true, but the conclusion is false; the statement must be false.

Let A, B, and C be nonempty sets and let $f: A \rightarrow B$ and $g: B \rightarrow C$ be functions. If $g \circ f$ is a surjection, then f is a surjection.

Statement. We can provide a counterexample to verify this statement is false. That is, we can provide a specific example where $g \circ f$ is a surjection but f is not a surjection. Consider the piecewise functions represented in Figure 4. That is, let $A=\{a\}, B=\{1,2\}$ and $C=\{X\}$. Functions f and g are defined such that $f(a)=1, g(1)=X$, and $g(2)=X$.

Note that $g \circ f$ is a surjection because even element in its codomain, C, has a corresponding preimage in the domain, A. This is easy to show because there is only one element in C, X, and it's pre-image is a which is in A.

Figure 4: $f: A \rightarrow B$ and $g: B \rightarrow C$ where $g \circ f(x)$ is surjective

However, note that f is a not surjection because we can find a specific element that is in the codomain that does not have a pre-image in the domain. In this case, $2 \in B$ but there is no element in A that would produce a 2 when plugged into f.

Since we have shown a specific case where the hypothesis is true, but the conclusion is false; the statement must be false.

Problem 7

Let $\left(f_{n}\right)$ be the Fibonacci sequence. For all f_{m}, where m is a natural number such that $m \not \equiv 0(\bmod 3), f_{m}$ is odd.

Proof. We will assume that $\left(f_{n}\right)$ is the Fibonacci sequence. The first two terms of the Fibonacci sequence, f_{1} and f_{2}, are defined as 1 . Any subsequent term in the sequence can be found by adding the two previous terms, or, symbolically, $f_{n}=f_{n-1}+f_{n-2}$ for all integers n greater than or equal to 3 . We will assume that f_{m} is a number in the Fibonacci sequence where m is a natural number such that $m \not \equiv 0(\bmod 3)$. This means that either $m \equiv 1(\bmod 3)$ or $m \equiv 2(\bmod 3)$. We will show that f_{m} is odd. We will prove each of these cases through mathematical induction.

Case 1: First we will examine f_{m} where $m \equiv 1(\bmod 3)$. Using the definition of congruence and divides, we know

$$
\begin{aligned}
& m \equiv 1(\bmod 3) \\
& 3 \mid \\
& 3-1 \\
& 3 j=m-1
\end{aligned}
$$

for some integer j. Solving for m gives us

$$
3 j+1=m
$$

This means we are looking looking at numbers in the sequence in the form of $f_{3 j+1}$. By definition, $3 j+1$ must be a natural number which means that we must consider all cases where $j \geq 0$. To proceed with our proof by induction, we will define our predicate $P(k)$ to be

$$
f_{3 k+1} \text { is odd. }
$$

for all integers $k \geq 0$. We will show that $P(0)$ is true and will show that if $P(k)$ is true, then $P(k+1)$ is true.

First, we must show $P(0)$ is true. Note that if we plug 0 in for k into $3 k+1$, we get 1 . Therefore we are looking at the term f_{1} in the sequence. By the definition of the Fibonacci sequence, the term f_{1} is 1 , and 1 is odd. Thereby $P(0)$ is true, as desired.

Next, we will assume that $P(k)$ is true and will show that $P(k+1)$ is true. We start by choosing an arbitrary $k \in \mathbb{Z}$ where $k \geq 0$. Assuming that $P(k)$ is true means that $f_{3 k+1}$ is odd. Thus, this can be written as

$$
f_{3 k+1}=2 g+1
$$

for some integer g. Now let's look at $P(k+1)$, which deals with $f_{3(k+1)+1}$, or simply $f_{3 k+4}$. The definition of the Fibonacci sequence tells us that

$$
f_{3 k+4}=f_{3 k+3}+f_{3 k+2}
$$

for all terms where $3 k+4 \geq 3$. In the same way, we can rewrite $f_{3 k+3}$ to obtain

$$
\begin{aligned}
f_{3 k+4} & =\left(f_{3 k+2}+f_{3 k+1}\right)+f_{3 k+2} \\
& =2 \cdot f_{3 k+2}+f_{3 k+1}
\end{aligned}
$$

We can substitute the value for $f_{3 k+1}$ we found using our inductive hypothesis into this equation, and do some rearranging to get

$$
\begin{aligned}
f_{3 k+4} & =2 \cdot f_{3 k+2}+(2 g+1) \\
& =2 \cdot f_{3 k+2}+2 g+1 \\
& =2\left(f_{3 k+2}+g\right)+1
\end{aligned}
$$

Note that $f_{3 k+2}$ is an integer because all numbers in the Fibonacci sequence are integers. We already know g in an integer; therefore $f_{3 k+2}+g$ is an integer. This means that $f_{3 k+4}$ is odd by the definition of odd, as desired.

Thus, by the Extended First Principle of Mathematical Induction, we have prove that for all f_{m} where m is a natural number such that $m \equiv 1(\bmod 3), f_{m}$ is odd.

Case 2: Next we will examine f_{m} where $m \equiv 2(\bmod 3)$. Using the definition of congruence and divides, we know

$$
\begin{aligned}
& m \equiv 2(\bmod 3) \\
& 3 \mid \\
& 3 q-2 \\
& 3 q=m-2
\end{aligned}
$$

for some integer q. Solving for m gives us

$$
3 q+2=m
$$

This means we are looking looking at numbers in the sequence in the form of $f_{3 q+2}$. By definition, $3 q+2$ must be a natural number which means that we must consider all cases where $q \geq 0$. To proceed with our proof by induction, we will define our predicate $P(k)$ to be

$$
f_{3 k+2} \text { is odd. }
$$

for all integers $k \geq 0$. We will show that $P(0)$ is true and will show that if $P(k)$ is true, then $P(k+1)$ is true.

First, we must show $P(0)$ is true. Note that if we plug 0 in for k into $3 k+2$, we get 2 . Therefore we are looking at the term f_{2} in the sequence. The term f_{2} is defined by the Fibonacci sequence to be 1 . We know that 1 is odd, therefore $P(0)$ is true, as desired.

Next, we will assume that $P(k)$ is true and will show that $P(k+1)$ is true. We start by choosing an arbitrary $k \in \mathbb{Z}$ where $k \geq 0$. Assuming that $P(k)$ is true means that $f_{3 k+2}$ is odd. Thus, this can be written as

$$
f_{3 k+2}=2 p+1
$$

for some integer p. Now let's look at $P(k+1)$, which deals with $f_{3(k+1)+2}$, or simply $f_{3 k+5}$. The definition of the Fibonacci sequence tells us that

$$
f_{3 k+5}=f_{3 k+4}+f_{3 k+3} .
$$

for all terms where $3 k+5 \geq 3$. In the same way, we can rewrite the terms for $f_{3 k+3}$ to obtain

$$
\begin{aligned}
f_{3 k+5} & =\left(f_{3 k+3}+f_{3 k+2}\right)+f_{3 k+3} \\
& =2 \cdot f_{3 k+3}+f_{3 k+2} .
\end{aligned}
$$

We can substitute the value for $f_{3 k+2}$ we found using our inductive hypothesis into this equation, and do some rearranging to get

$$
\begin{aligned}
f_{3 k+5} & =2 \cdot f_{3 k+3}+(2 p+1) \\
& =2 \cdot f_{3 k+3}+2 p+1 \\
& =2\left(f_{3 k+3}+p\right)+1
\end{aligned}
$$

Note that $f_{3 k+3}$ is an integer because all numbers in the Fibonacci sequence are integers. We already know p in an integer therefore $f_{3 k+3}+p$ is an integer. This means that $f_{3 k+5}$ is odd by the definition of odd, as desired.

Thus, the the Extended First Principle of Mathematical Induction, have prove that for all f_{m} where m is a natural number such that $m \equiv 2(\bmod 3), f_{m}$ is odd.

We have proven that for all terms f_{m} in the Fibonacci sequence where m is a natural number such that $m \equiv 1(\bmod 3)$ or $m \equiv 2(\bmod 3)$, or equivalently, $m \not \equiv 0(\bmod 3), f_{m}$ is odd.

