Matthew Flickinger Math 210D Dr. Novotny Proof Portfolio

Problem 1

Let x and y be positive real numbers. If $x \neq y$, then $x + y > \frac{4xy}{x+y}$.

Proof We will assume that x and y are positive real numbers. We will proceed with a proof by contraposition. Therefore we will also assume that $x + y \leq \frac{4xy}{x+y}$ and will show that x = y.

Because both x and y are positive numbers, their sum will also be a positive number. Therefore we can safely multiply both sides of our inequality by x + y to obtain

$$\begin{aligned} x+y &\leq \frac{4xy}{x+y} \\ (x+y)(x+y) &\leq \frac{4xy}{x+y}(x+y) \\ (x+y)(x+y) &\leq 4xy. \end{aligned}$$

Next we can expand the right side of our equation to get

$$x^2 + 2xy + y^2 \leq 4xy.$$

Now we can gather all of our terms on the right side by subtracting 4xy from both sides

$$\begin{array}{rcl} x^{2} + 2xy + y^{2} - 4xy & \leq & 4xy - 4xy \\ x^{2} - 2xy + y^{2} & \leq & 0 \end{array}$$

which leaves us with 0 on the left side. Note that we can factor the right side to get

$$(x-y)^2 \leq 0.$$

We can solve for x + y by taking the square root of both sides. Because squaring a quantity can turn negative values into positive ones, we must be careful with our inequality. Thus we are left with the following equations

$$x - y \le 0$$
 and $x - y \ge 0$.

To find the relationship between x and y we can add y to both sides of the equations to get

$$x-y+y \le 0+y$$
 and $x-y+y \ge 0+y$
 $x \le y$ and $x \ge y$.

The only way for $x \leq y$ and $x \geq y$ to be true is for x = y, as desired.

Thus we have proven that for all real numbers x and y, when $x + y \leq \frac{4xy}{x+y}$, then x = y; or equivalently when $x \neq y$, then $x + y > \frac{4xy}{x+y}$.

Figure 1: $\triangle ABC$ is a right, isosceles triangle

For all right triangles with a hypotenuse of length a cm and legs of length b cm and c cm, the triangle is isosceles if and only if its area is $\frac{1}{4}a^2$ cm².

Proof. We will assume $\triangle ABC$ is a right triangle with a hypotenuse of length a cm and legs of length b cm and c cm. We will show that $\triangle ABC$ is isosceles if and only if its area is $\frac{1}{4}a^2$ cm². To do this we will show two things. First, if $\triangle ABC$ is isosceles, then its area is $\frac{1}{4}a^2$ cm². Secondly, if $\triangle ABC$ has an area of $\frac{1}{4}a^2$ cm², then $\triangle ABC$ is isosceles.

We will start with proving that if $\triangle ABC$ is isosceles, then its area is $\frac{1}{4}a^2$ cm². To do this we will additionally assume that $\triangle ABC$ is isosceles and will show its area to be $\frac{1}{4}a^2$ cm². We can see a general picture of what $\triangle ABC$ might look like in Figure 1.

Note that because $\triangle ABC$ is a right triangle, can can flip it onto itself to make a rectangle. (See the dashed lines in Figure 1.) The area of this quadrilateral can be found by multiplying b by c. The area of $\triangle ABC$ would be have of that, or simply $\frac{1}{2}bc$.

The definition of isosceles tells us that the legs of our triangle will both have the same length, therefore b = c. We can use this fact to make a substitution in our area formula to obtain

area of
$$\triangle ABC = \frac{1}{2}bc$$

= $\frac{1}{2}b(b)$
= $\frac{1}{2}b^2$.

Because $\triangle ABC$ is a right triangle, we can use the Pythagorean theorem which states $a^2 = b^2 + c^2$. Again, we know that b = c so we can make another substitution to get

$$a^2 = b^2 + c^2$$

 $a^2 = b^2 + b^2$
 $a^2 = 2b^2$.

Figure 2: $\triangle ABC$ is a right triangle

Then we can divide by 2 to solve for b^2 which yields

$$\frac{1}{2}a^2 = b^2.$$

We can plug this value of b^2 into our area formula to get

area of
$$\triangle ABC = \frac{1}{2}b^2$$

= $\frac{1}{2}(\frac{1}{2}a^2)$
= $\frac{1}{4}a^2$

as desired.

Finally, we must show that if $\triangle ABC$ has an area of $\frac{1}{4}a^2$ cm², then $\triangle ABC$ is isosceles. Like before, we can rotate the triangle onto itself to make a rectangle (see Figure 2). The area of the rectangle would be half of this rectangle, thus the area of $\triangle ABC$ is also $\frac{1}{2}bc$. Now we know that

$$\frac{1}{4}a^2 = \frac{1}{2}bc.$$

We are still dealing with a right triangle, so by the Pythagorean Theorem we know that $a^2 = b^2 + c^2$. Let's substitute this value for a^2 into our area equation to obtain

$$\frac{1}{4}a^2 = \frac{1}{2}bc$$
$$\frac{1}{4}(b^2 + c^2) = \frac{1}{2}bc.$$

We can simplify this equation by multiplying both sides by 4 and then grouping all terms on the same side to get

$$4 \cdot \frac{1}{4}(b^{2} + c^{2}) = 4 \cdot \frac{1}{2}bc$$

$$b^{2} + c^{2} = 2bc$$

$$b^{2} + c^{2} - 2bc = 2bc - 2bc$$

$$b^{2} - 2bc + c^{2} = 0.$$

Note that we can now factor the left side to obtain

$$(b-c)^2 = 0.$$

To solve for b - c we will take the square root of both side which gives us

$$\sqrt{(b-c)^2} = \sqrt{0}$$
$$b-c = 0$$

or equivalently,

b = c.

If b and c are equal to each other, that means the legs of our triangle have the same length. Thus, by the definition of isosceles, $\triangle ABC$ is isosceles, as desired.

We have show that, for a right triangle $\triangle ABC$, both, if $\triangle ABC$ is isosceles then its area is $\frac{1}{4}a^2$ cm²; as well as, if the area of $\triangle ABC$ is $\frac{1}{4}a^2$ cm², then $\triangle ABC$ is isosceles. Thereby we have proven that a right triangle $\triangle ABC$, with a hypotenuse of length *a* cm and legs of length *b* cm and *c* cm, is isosceles if and only if its area is $\frac{1}{4}a^2$ square centimeters.

If m is an odd integer, then the equation $x^2 + x - m = 0$ has no integer solution for x.

Proof. We will prove this statement with an indirect proof by contraposition. Therefore we will assume that $x^2 + x - m = 0$ has an integer solution for x and will show that m is an even integer.

Assuming that $x^2 + x - m = 0$ has an integer solution for x means that

$$x^2 + x - m = 0$$

for some integer x. Let's manipulate our equation by adding m to both sides and doing a bit of factoring to get

$$x^{2} + x - m = 0$$
$$x^{2} + x = m$$
$$x(x+1) = m.$$

Now we have two cases to consider. Because $x \in \mathbb{Z}$, x is either even or odd.

<u>Case 1</u>: First let's consider where x is even. Since 1 is odd, x + 1 would be odd as proven by Theorem 2 which states that the sum of an even and odd integer is an odd integer. In this case, the product of x(x + 1) would be even because, as Theorem 4 states, the product of an even and odd integer is even. Thus m is even as desired.

<u>Case 2</u>: Next we must consider where x is odd. Since 1 is odd, x + 1 would be even as proven by Theorem 3 which states that the sum of any two odd integers is even. In this case again, the product of x(x + 1) would be even because, as Theorem 4 states, the product of an even and odd integer is even. Thus m is even as desired.

In both cases we have shown that m is even. Therefore we have proven that if $x^2 + x - m = 0$ has an integer solution for x, then m is an even integer; or equivalently, if m is an odd integer, then $x^2 + x - m = 0$ has no integer solution for x.

For all natural numbers $n, 5^n - 4n \equiv 1 \pmod{16}$.

Proof. We will assume that n is a natural number. We will proceed with a proof by mathematical induction. We will define our predicate as

$$P(n): 5^n - 4n \equiv 1 \pmod{16}.$$

We will show P(1) is true and that if P(k) is true, then P(k+1) is true for all natural numbers k.

First let's start by showing P(1) is true. To do this, we must show that $5^1 - 4(1) \equiv 1 \pmod{16}$. Let's start by evaluating the left side of that equation:

$$5^1 - 4(1) = 5 - 4 = 1.$$

We already have 1 in the right side. We know that congruence modulo 16 is an equivalence relationship and thus it is reflexive; therefore $1 \equiv 1 \pmod{16}$ is true. Consequently, P(1) is true, as desired.

Next we must show that if P(k) is true, then P(k+1) is also true. Therefore we will assume that P(k) is true and will show that P(k+1) is true for any arbitrary $k \in \mathbb{N}$. We start by choosing a $k \in \mathbb{N}$. To show that P(k+1) is true, we will show that $5^{k+1} - 4(k+1) \equiv 1 \pmod{16}$. We can write P(k) as

$$5^k - 4k \equiv 1 \pmod{16}.$$

By the definition of congruence modulo 16, this means that

$$16 \mid 5^k - 4k - 1.$$

The definition of divides allows us to rewrite this statement as

$$16m = 5^n - 4n - 1$$

for some integer m. Let's start working toward P(k+1) by multiplying both sides by 5. When we do this we get

$$5 \cdot 16m = 5(5^{k} - 4k - 1)$$

$$80m = 5 \cdot 5^{k} - 5 \cdot 4k - 5 \cdot 1$$

$$80m = 5^{k+1} - 20k - 5.$$

Now let's manipulate the right side a bit to obtain

$$80m = 5^{k+1} - 4k - 4 - 1 - 16k$$

Further manipulation gives us

$$80m = 5^{k+1} - 4(k+1) - 1 - 16k$$

$$80m + 16k = 5^{k+1} - 4(k+1) - 1$$

$$16(5m+k) = 5^{k+1} - 4(k+1) - 1.$$

Note that m is an integer, so 5m is an integer as well because 5 is an integer and the integers are closed under multiplication. We also know that k is an integer, and, because the integers are closed under addition, 5m + k is an integer. The definition of divides allows us to rewrite the following statement as

$$16 \mid 5^{k+1} - 4(k+1) - 1$$

which, by the definition of congruence modulo 16, also means

$$5^{k+1} - 4(k+1) \equiv 1 \pmod{16}.$$

This means that P(k+1) is true, as desired.

Thus, by the First Principle of Mathematical Induction, we have proven that $5^n - 4n \equiv 1 \pmod{16}$ for all natural numbers n.

For all nonempty sets A, B, and C from some universal set U, $(A \times B) \cup (C \times B) = (A \cup C) \times B$.

Proof. We will assume that $A, B, C \subseteq U$. We will show that $(A \times B) \cup (C \times B) = (A \cup C) \times B$ for all nonempty sets A, B, C. To do this we will show that $(A \times B) \cup (C \times B) \subseteq (A \cup C) \times B$ and $(A \cup C) \times B \subseteq (A \times B) \cup (C \times B)$.

We will start by showing $(A \times B) \cup (C \times B) \subseteq (A \cup C) \times B$. Let's let choose an arbitrary $(x_1, y_1) \in (A \times B) \cup (C \times B)$. This means that $(x_1, y_1) \in (A \times B)$ or $(x_1, y_1) \in (C \times B)$.

<u>Case 1</u>: First let's consider $(x_1, y_1) \in (A \times B)$. This means that $x_1 \in A$ and $y_1 \in B$. Since $x_1 \in A$, then $x_1 \in A \cup C$. Now that we know $x_1 \in A \cup C$ and $y_1 \in B$, we can say $(x_1, y_1) \in (A \cup C) \times B$.

<u>Case 2</u>: In the other case, we must consider where $(x_1, y_1) \in (C \times B)$. This means that $x_1 \in C$ and $y_1 \in B$. Since $x_1 \in C$, then $x_1 \in A \cup C$. Thus we can say $(x_1, y_2) \in (A \cup C) \times B$ because $x_1 \in A \cup C$ and $y_1 \in B$.

In both cases we have shown that any element in $(A \times B) \cup (C \times B)$ is also in $(A \cup C) \times B$, therefore $(A \times B) \cup (C \times B) \subseteq (A \cup C) \times B$ as desired.

Now for the second part. We must show $(A \cup C) \times B \subseteq (A \times B) \cup (C \times B)$. Let's choose an arbitrary element $(x_2, y_2) \in (A \cup C) \times B$. This means there exists some $x_2 \in A \cup C$ and some $y_2 \in C$. Since $x_2 \in A \cup C$, this means that $x_2 \in A$ or $x_2 \in C$.

<u>Case 1</u>: In the case where $x_2 \in A$, we can say that $(x_2, y_2) \in A \times B$ because we already know $y_2 \in B$. Since $(x_2, y_2) \in A \times B$, we know that $(x_2, u_2) \in (A \times B) \cup (C \times B)$.

<u>Case 2</u>: Similarly, in the case where $x_2 \in C$, we can say that $(x_2, y_2) \in C \times B$ because $y_2 \in B$. Since $(x_2, y_2) \in C \times B$, we can be sure $(x_2, y_2) \in (A \times B) \cup (C \times B)$.

In both cases we have shown that $(A \cup C) \times B \subseteq (A \times B) \cup (C \times B)$ by showing that any arbitrary element in $(A \cup C) \times B$ is also in $(A \times B) \cup (C \times B)$ as desired.

Since we have shown that both $(A \times B) \cup (C \times B) \subseteq (A \cup C) \times B$ and $(A \cup C) \times B \subseteq (A \times B) \cup (C \times B)$, we can conclude that $(A \times B) \cup (C \times B) = (A \cup C) \times B$ for all nonempty sets A, B, and C from some universal set U.

Let A, B, and C be nonempty sets and let $f : A \to B$ and $g : B \to C$ be functions. If $g \circ f$ is a surjection, then g is a surjection.

Proof. Let's assume A, B, and C are nonempty sets. We will also assume that $g \circ f$ is a surjection and will show that g is a surjection.

To prove that g is a surjection, we must show every element in its codomain has a corresponding pre-image in the domain. We will begin by choosing an arbitrary $y \in C$ (the codomain of g).

Now that we know there exists some element $y \in C$ and we assumed that $g \circ f$ is a surjection, this means that there exists an element $x \in A$ such that $g \circ f(x) = y$.

We will now construct a $b \in B$ (the domain of g) such that g(b) = y. Consider b = f(x). Note that the function f maps elements from A to B. We know that $x \in A$, therefore the result of f(x) will be an element in B. This $b \in B$. Now let's plug this value into the function g to get

$$g(b) = g(f(x))$$
$$= g \circ f(x).$$

Recall that $g \circ f(x) = y$. We can now substitute this into our equation to get

$$g(b) = y.$$

This means that any arbitrary element in the codomain of g has a pre-image in the domain, therefore g is a surjection, as desired.

Thus we have shown that for nonempty sets A, B, and C and functions $f : A \to B$ and $g : B \to C$; if $g \circ f$ is a surjection, then g is a surjection.

Let A, B, and C be nonempty sets and let $f : A \to B$ and $g : B \to C$ be functions. If g is a surjection, then $g \circ f$ is a surjection.

Statement. We can provide a counter example to verify this statement is false. This means that we can provide a specific example where g is a surjection but $g \circ f$ is not a surjection. Consider the piecewise functions represented in Figure 3. That is, let $A = \{a\}, B = \{1, 2\}$ and $C = \{X, Y\}$. Functions f and g are defined such that f(a) = 1, g(1) = X, and g(2) = Y.

Note that g is a surjection because every element in it's codomain, C, has a corresponding element in the domain, B. Specifically, we can say g(1) = X and g(2) = Y; thus our hypothesis is true.

However, note that $g \circ f$ is not a surjection. We say this because there is an element in the codomain of $g \circ f$, C, that has no corresponding pre-image in the domain, A. As you can tell from Figure 3, $Y \in C$ but no element from A will yield Y as an output.

Figure 3: $f: A \to B$ and $g: B \to C$ where g is surjective

Since we have shown a specific case where the hypothesis is true, but the conclusion is false; the statement must be false.

Let A, B, and C be nonempty sets and let $f : A \to B$ and $g : B \to C$ be functions. If $g \circ f$ is a surjection, then f is a surjection.

Statement. We can provide a counterexample to verify this statement is false. That is, we can provide a specific example where $g \circ f$ is a surjection but f is not a surjection. Consider the piecewise functions represented in Figure 4. That is, let $A = \{a\}, B = \{1, 2\}$ and $C = \{X\}$. Functions f and g are defined such that f(a) = 1, g(1) = X, and g(2) = X.

Note that $g \circ f$ is a surjection because even element in its codomain, C, has a corresponding preimage in the domain, A. This is easy to show because there is only one element in C, X, and it's pre-image is a which is in A.

Figure 4: $f: A \to B$ and $g: B \to C$ where $g \circ f(x)$ is surjective

However, note that f is a not surjection because we can find a specific element that is in the codomain that does not have a pre-image in the domain. In this case, $2 \in B$ but there is no element in A that would produce a 2 when plugged into f.

Since we have shown a specific case where the hypothesis is true, but the conclusion is false; the statement must be false.

Let (f_n) be the Fibonacci sequence. For all f_m , where m is a natural number such that $m \not\equiv 0 \pmod{3}$, f_m is odd.

Proof. We will assume that (f_n) is the Fibonacci sequence. The first two terms of the Fibonacci sequence, f_1 and f_2 , are defined as 1. Any subsequent term in the sequence can be found by adding the two previous terms, or, symbolically, $f_n = f_{n-1} + f_{n-2}$ for all integers n greater than or equal to 3. We will assume that f_m is a number in the Fibonacci sequence where m is a natural number such that $m \not\equiv 0 \pmod{3}$. This means that either $m \equiv 1 \pmod{3}$ or $m \equiv 2 \pmod{3}$. We will show that f_m is odd. We will prove each of these cases through mathematical induction.

<u>Case 1</u>: First we will examine f_m where $m \equiv 1 \pmod{3}$. Using the definition of congruence and divides, we know

$$m \equiv 1 \pmod{3}$$

$$3 \mid m-1$$

$$3j = m-1$$

for some integer j. Solving for m gives us

$$3j+1 = m.$$

This means we are looking looking at numbers in the sequence in the form of f_{3j+1} . By definition, 3j + 1 must be a natural number which means that we must consider all cases where $j \ge 0$. To proceed with our proof by induction, we will define our predicate P(k) to be

 f_{3k+1} is odd.

for all integers $k \ge 0$. We will show that P(0) is true and will show that if P(k) is true, then P(k+1) is true.

First, we must show P(0) is true. Note that if we plug 0 in for k into 3k + 1, we get 1. Therefore we are looking at the term f_1 in the sequence. By the definition of the Fibonacci sequence, the term f_1 is 1, and 1 is odd. Thereby P(0) is true, as desired.

Next, we will assume that P(k) is true and will show that P(k+1) is true. We start by choosing an arbitrary $k \in \mathbb{Z}$ where $k \geq 0$. Assuming that P(k) is true means that f_{3k+1} is odd. Thus, this can be written as

$$f_{3k+1} = 2g + 1$$

for some integer g. Now let's look at P(k+1), which deals with $f_{3(k+1)+1}$, or simply f_{3k+4} . The definition of the Fibonacci sequence tells us that

$$f_{3k+4} = f_{3k+3} + f_{3k+2}.$$

for all terms where $3k + 4 \ge 3$. In the same way, we can rewrite f_{3k+3} to obtain

$$f_{3k+4} = (f_{3k+2} + f_{3k+1}) + f_{3k+2}$$
$$= 2 \cdot f_{3k+2} + f_{3k+1}$$

We can substitute the value for f_{3k+1} we found using our inductive hypothesis into this equation, and do some rearranging to get

$$f_{3k+4} = 2 \cdot f_{3k+2} + (2g+1)$$

= $2 \cdot f_{3k+2} + 2g + 1$
= $2(f_{3k+2} + g) + 1.$

Note that f_{3k+2} is an integer because all numbers in the Fibonacci sequence are integers. We already know g in an integer; therefore $f_{3k+2} + g$ is an integer. This means that f_{3k+4} is odd by the definition of odd, as desired.

Thus, by the Extended First Principle of Mathematical Induction, we have prove that for all f_m where m is a natural number such that $m \equiv 1 \pmod{3}$, f_m is odd.

<u>Case 2</u>: Next we will examine f_m where $m \equiv 2 \pmod{3}$. Using the definition of congruence and divides, we know

$$m \equiv 2 \pmod{3}$$

3 | $m-2$
 $3q = m-2$

for some integer q. Solving for m gives us

$$3q + 2 = m.$$

This means we are looking looking at numbers in the sequence in the form of f_{3q+2} . By definition, 3q + 2 must be a natural number which means that we must consider all cases where $q \ge 0$. To proceed with our proof by induction, we will define our predicate P(k) to be

 f_{3k+2} is odd.

for all integers $k \ge 0$. We will show that P(0) is true and will show that if P(k) is true, then P(k+1) is true.

First, we must show P(0) is true. Note that if we plug 0 in for k into 3k + 2, we get 2. Therefore we are looking at the term f_2 in the sequence. The term f_2 is defined by the Fibonacci sequence to be 1. We know that 1 is odd, therefore P(0) is true, as desired.

Next, we will assume that P(k) is true and will show that P(k+1) is true. We start by choosing an arbitrary $k \in \mathbb{Z}$ where $k \geq 0$. Assuming that P(k) is true means that f_{3k+2} is odd. Thus, this can be written as

$$f_{3k+2} = 2p+1$$

for some integer p. Now let's look at P(k+1), which deals with $f_{3(k+1)+2}$, or simply f_{3k+5} . The definition of the Fibonacci sequence tells us that

$$f_{3k+5} = f_{3k+4} + f_{3k+3}.$$

for all terms where $3k + 5 \ge 3$. In the same way, we can rewrite the terms for f_{3k+3} to obtain

$$f_{3k+5} = (f_{3k+3} + f_{3k+2}) + f_{3k+3}$$
$$= 2 \cdot f_{3k+3} + f_{3k+2}.$$

We can substitute the value for f_{3k+2} we found using our inductive hypothesis into this equation, and do some rearranging to get

$$f_{3k+5} = 2 \cdot f_{3k+3} + (2p+1)$$

= 2 \cdot f_{3k+3} + 2p + 1
= 2(f_{3k+3} + p) + 1.

Note that f_{3k+3} is an integer because all numbers in the Fibonacci sequence are integers. We already know p in an integer therefore $f_{3k+3} + p$ is an integer. This means that f_{3k+5} is odd by the definition of odd, as desired.

Thus, the the Extended First Principle of Mathematical Induction, have prove that for all f_m where m is a natural number such that $m \equiv 2 \pmod{3}$, f_m is odd.

We have proven that for all terms f_m in the Fibonacci sequence where m is a natural number such that $m \equiv 1 \pmod{3}$ or $m \equiv 2 \pmod{3}$, or equivalently, $m \not\equiv 0 \pmod{3}$, f_m is odd.